Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Hyeon Mo Cho, Jeffrey S. Moore and Scott R. Wilson*

University of Illinois, School of Chemical Sciences, 505 South Mathews Avenue, Urbana, Illinois 61801, USA

Correspondence e-mail: srwilson@uiuc.edu

Key indicators

Single-crystal X-ray study
$T=193 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.023$
$w R$ factor $=0.049$
Data-to-parameter ratio $=23.9$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

N, N-Dicyclohexyl-2-iodoacetamide

In the crystal structure of the title compound, $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{INO}$, the sum of the angles around the N atom is 359.9°, implying a planar configuration.

Received 29 September 2005 Accepted 14 October 2005 Online 22 October 2005

Comment

The title compound, (I), was synthesized in the process of investigating the reactivity of a helical foldamer (Heemstra \& Moore, 2004) with iodoacetamide derivatives. The configuration around the N atom of the acetamide group is essentially planar (sum of angles $=359.9^{\circ}$).

(I)

Experimental

The title compound was prepared by the reaction of 2 -chloro- N, N dicyclohexylacetamide (Speziale \& Hamm, 1956a) with 1.2 equivalents of KI in 2-butanone at reflux for 10 h (Speziale \& Hamm, $1956 b$). The crude product was washed with brine and was recrystallized from diethyl ether at room temperature. Single crystals suitable for X-ray diffraction were grown at room temperature by evaporation of a diethylether/hexane solution. ${ }^{1}$ H NMR (400 MHz , CDCl_{3}): $\delta 3.69(s, 2 \mathrm{H}), 3.37(t, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.88(b r, 1 \mathrm{H}), 2.41(b r$, 2 H), 1.07-1.86 ($\mathrm{m}, 18 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 166.4,60.1$, $56.3,30.5,26.3,25.7,25.1,25.0,0.0$. MS (EI): m / z (\%): 349 ($M^{+}, 2.5$), 222 (100), 168 (14.0), 140 (62.0), 98 (25.6), 83 (31.2), 55 (68.0). HRMS calculated for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{INO}$: 349.0903 ; found: 349.0907 .

Crystal data

$\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{INO}$
$M_{r}=349.24$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=10.576(2) \AA$
$b=11.049(2) \AA$
$c=12.907(3) \AA$
$V=1508.2(5) \AA^{3}$
$Z=4$
$D_{x}=1.538 \mathrm{Mg} \mathrm{m}^{-3}$

${ }_{2}$ INO

Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=10.576$ (2) A
$b=11.049$ (2) \AA
$V=1508.2(5) \AA^{3}$
$D_{x}=1.538 \mathrm{Mg} \mathrm{m}^{-3}$

Mo $K \alpha$ radiation

Cell parameters from 939

reflections

$\theta=3.1-27.7^{\circ}$
$\mu=2.11 \mathrm{~mm}^{-1}$
$T=193$ (2) K
Prism, colorless
$0.25 \times 0.22 \times 0.15 \mathrm{~mm}$

organic papers

Data collection

Siemens SMART/Platform CCD diffractometer
ω scans
Absorption correction: integration (SHELXTL/XPREP; Bruker, 2001)
$T_{\text {min }}=0.536, T_{\text {max }}=0.776$
14614 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.023$
$w R\left(F^{2}\right)=0.049$
$S=1.02$
3702 reflections
155 parameters
H -atom parameters constrained $w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0231 P)^{2}\right.$ $+0.2165 P$]
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$

H atoms were included as riding idealized contributors $(\mathrm{C}-\mathrm{H}=$ 0.99 and $1.00 \AA$). $U_{\text {iso }}(\mathrm{H})$ values were assigned as 1.2 times $U_{\text {eq }}$ (carrier).

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2001); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: XCIF (Bruker, 2001).

The Materials Chemistry Laboratory at the University of Illinois is supported in part by grants NSF CHE 95-03145 and NSF CHE 03-43032 from the National Science Foundation. This work was supported by the Postdoctoral Fellowship

3702 independent reflections
3273 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.026$
$\theta_{\text {max }}=28.3^{\circ}$
$h=-13 \rightarrow 13$
$k=-14 \rightarrow 14$
$l=-17 \rightarrow 17$
$(\Delta / \sigma)_{\text {max }}=0.002$
$\Delta \rho_{\text {max }}=0.40 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\min }=-0.51 \mathrm{e}^{-3}$
Extinction correction: SHELXL97
Extinction coefficient: 0.0010 (3)
Absolute structure: Flack (1983),
1569 Friedel pairs
Flack parameter: -0.015 (16)

Figure 1
SHELXTL (Bruker, 2001) plot showing 35\% probability ellipsoids for non- H atoms and circles of arbitrary size for H atoms.

Program of the Korea Science and Engineering Foundation (KOSEF, 2004).

References

Bruker (2001). SAINT (Version 6.22), SHELXTL (Version 6.12), SMART
(Version 5.625) and XCIF. Bruker AXS Inc., Madison, Wisconsin, USA.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Heemstra, J. M. \& Moore, J. S. (2004). J. Am. Chem. Soc. 126, 1648-1649
Speziale, A. J. \& Hamm, P. C. (1956a). J. Am. Chem. Soc. 78, 2556-2559.
Speziale, A. J. \& Hamm, P. C. (1956b). J. Am. Chem. Soc. 78, 5580-5584.

